区块链与函数相结合 区块链的函数

TLBC价格行情 196 0

今天给大家聊到了区块链与函数相结合,以及区块链的函数相关的内容,在此希望可以让网友有所了解,最后记得收藏本站。

深入了解区块链的共识机制及算法原理

所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为区块链与函数相结合你是个好人,那么基本上就可以断定区块链与函数相结合你这人还不坏。

要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。

区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。

目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。

工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。

2012年,化名Sunny King的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。

股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。

股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。

股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。

Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。

Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等

这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。

工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。

下图所示的为工作量证明流程。

举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。

通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。

下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;...;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。

由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。

统计输入的字符创与得到对应目标结果实际使用的计算次数如下:

对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。

比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。

难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。

难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:

新难度值=旧难度值*(20160分钟/过去2016个区块花费时长)。

工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:

目标值=最大目标值/难度值,其中最大目标值为一个恒定值0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。

我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。

可以把比特币将这道工作量证明谜题的步骤大致归纳如下:

该过程可以用下图表示:

比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。

什么是区块链,区块链技术的原理是什么?

区块链技术是互联网十大典型司法技术应用之一。区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新应用模式。

区块链是比特币的一个重要概念。实际上,它是一个分散的数据库。区块链作为比特币的底层技术,是利用密码学方法生成的一系列数据块。每个数据块包含一批比特币网络交易信息,用于验证其信息的有效性(防伪),并生成下一个数据块。

区块链起源于比特币。2008年11月1日,一位自称中本聪(SatoshiNakamoto)的人发表了《比特币:一种点对点的电子现金系统》一文,阐述了基于P2P网络技术、加密技术、时间戳技术、区块链技术等的电子现金系统框架概念,标志着比特币的诞生。

/iknow-pic.cdn.bcebos.com/35a85edf8db1cb13dfbff37fd254564e93584b8c"target="_blank"title="点击查看大图"class="f0e2-0e0a-b45c-5b5d ikqb_img_alink"/iknow-pic.cdn.bcebos.com/35a85edf8db1cb13dfbff37fd254564e93584b8c?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/

扩展资料:

区块链的诞生:

2008年由中本聪第一次提出了区块链的概念,随后几年,区块链成为电子货币比特币的核心组成部分:所有交易的公共账户。通过使用点对点网络和分布式时间戳服务器,可以对区块链数据库进行自主管理。

为比特币发明的区块链使其成为第一个解决重复消费问题的数字货币。比特币设计已经成为其他应用的灵感来源。2016年12月20日,数字货币联盟——中国FinTech数字货币联盟及FinTech研究院正式筹建。

参考资料来源:/baike.baidu.com/item/%E5%8C%BA%E5%9D%97%E9%93%BE/13465666?fr=aladdin"target="_blank"title="百度百科-区块链"百度百科-区块链

参考资料来源:/baike.baidu.com/item/%E5%8C%BA%E5%9D%97%E9%93%BE%E6%8A%80%E6%9C%AF/23686191"target="_blank"title="百度百科-区块链技术"百度百科-区块链技术

【区块链与密码学】第5-2讲:哈希函数的构造

本节课程区块链与函数相结合我们将详细讲解哈希函数的构造。

MASH-1 (Modular Arithmetic Secure Hash)是一个基于RSA算法的哈希算法区块链与函数相结合,在1995年提出区块链与函数相结合,入选国际标准ISO/IEC 10118-4;MASH-2是MASH-1的改进,把第四步中的2换成了28+1;由于涉及模乘/平方运算,计算速度慢,非常不实用。

分组密码的工作模式是: 根据不同的数据格式和安全性要求, 以一个具体的分组密码算法为基础构造一个分组密码系统的方法。

基于分组的对称密码算法比如DES/AES算法只是描述如何根据秘钥对一段固定长度(分组块)的数据进行加密,对于比较长的数据,分组密码工作模式描述了如何重复应用某种算法安全地转换大于块的数据量。

简单的说就是,DES/AES算法描述怎么加密一个数据块,分组密码工作模式模式了如果重复加密比较长的多个数据块。常见的分组密码工作模式有五种:

电码本( Electronic Code Book,ECB)模式

密文分组链接(Cipher Block Chaining,CBC)模式

密文反馈(Cipher Feed Back ,CFB)模式

输出反馈(Output Feed Back ,OFB)模式

计数器(Counter, CTR)模式

ECB工作模式

加密:输入是当前明文分组。

解密:每一个密文分组分别解密。

具体公式为:

CBC工作模式

加密:输入是当前明文分组和前一次密文分组的异或。

解密:每一个密文分组被解密后,再与前一个密文分组异或得明文。

具体公式为:

CFB工作模式

加密算法的输入是64比特移位寄存器,其初值为某个初始向量IV。

加密算法输出的最左(最高有效位)j比特与明文的第一个单元P1进行异或,产生出密文的第1个单元C1,并传送该单元。

然后将移位寄存器的内容左移j位并将C1送入移位寄存器最右边(最低有效位)j位。

这一过程继续到明文的所有单元都被加密为止。

OFB工作模式

OFB模式的结构类似于CFB

不同之处:

OFB模式是将加密算法的输出反馈到移位寄存器

CFB模式中是将密文单元反馈到移位寄存器

CTR工作模式

加密:输入是当前明文分组和计数器密文分组的异或。

解密:每一个密文分组被解密后,再与计数器密文分组异或得明文。

具体公式为:

工作模式比较

ECB模式,简单、高速,但最弱、易受重发攻击,一般不推荐。

CBC模式适用于文件加密,比ECB模式慢,安全性加强。当有少量错误时,不会造成同步错误。

OFB模式和CFB模式较CBC模式慢许多。每次迭代只有少数比特完成加密。若可以容忍少量错误扩展,则可换来恢复同步能力,此时用CFB或OFB模式。在字符为单元的流密码中多选CFB模式。

CTR模式用于高速同步系统,不容忍差错传播。

直接设计哈希函数

Merkle在1989年提出迭代型哈希函数的一般结构;(另外一个工作是默克尔哈希树),Ron Rivest在1990年利用这种结构提出MD4。(另外一个工作是RSA算法),这种结构在几乎所有的哈希函数中使用,具体做法为:

把所有消息M分成一些固定长度的块Yi

最后一块padding并使其包含消息M的长度

设定初始值CV0

循环执行压缩函数f,CVi=f(CVi -1||Yi -1)

最后一个CVi为哈希值

算法中重复使用一个压缩函数f

f的输入有两项,一项是上一轮输出的n比特值CVi-1,称为链接变量,另一项是算法在本轮的b比特输入分组Yi-1

f的输出为n比特值CVi,CVi又作为下一轮的输入

算法开始时还需对链接变量指定一个初值IV,最后一轮输出的链接变量CVL即为最终产生的杂凑值

通常有bn,因此称函数f为压缩函数

算法可表达如下:CV0=IV= n比特长的初值

CVi=f(CVi-1,Yi-1);1≤i≤L

H(M)=CVL

算法的核心技术是设计难以找到碰撞的压缩函数f,而敌手对算法的攻击重点是f的内部结构

f和分组密码一样是由若干轮处理过程组成

对f的分析需要找出f的碰撞。由于f是压缩函数,其碰撞是不可避免的,因此在设计f时就应保证找出其碰撞在计算上是困难的

哈希函数的构造就讲到这里啦,以上三种方式都可以构造哈希函数。下节课我们将学习常用哈希函数,敬请期待!

区块链技术中的哈希函数是什么?

重庆金窝窝: 哈希函数可将任意长度的资料经由Hash算法转换为一组固定长度的代码,原理是基于一种密码学上的单向哈希函数,这种函数很容易被验证,但是却很难破解。

通常业界使用y =hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。

区块链中哈希函数有什么用?

哈希函数,又叫散列函数、散列算法,是一种从任何一种数据中创建小的数字“指纹”(也叫做摘要)的方法。什么意思呢?就是说,你输入任何长度、任何内容的数据,哈希函数输出固定长度、固定格式的结果,这个结果类似于你输入数据的指纹。只要输入发生变化,那么指纹一定会发生变化。不同的内容,通过哈希函数得到的指纹不一样。这就是哈希函数。

在分布式账本里,为了保证数据完整性,会采用哈希值进行校验。如,一笔交易、一页账本(也就是区块的概念),用了哈希之后生成摘要,意味着整个区块交易信息无法进行篡改(即无法在篡改数据之后保持摘要不变)。

区块链原始的定义或狭义的理解就是区块+链的形式,这个链是通过哈希链接起来,每一个区块可能都有很多交易,整个区块又可以通过哈希函数产生摘要信息,然后规定每一个区块都需要记录上一个区块的摘要信息,这样一来所有区块都可以连成一条链。

如果改了历史中某一个区块的数据,意味着这个区块摘要值(即哈希值)会改变,那么下一个区块中记录的上一个区块的哈希也得做相应的修改,以此类推,也就是说如果要修改历史记录的话,要从那一个点开始往后所有记录都要修改才能保证账本的合法性,哈希函数就提高了账本篡改的难度。

链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

什么是区块链,它的原理是什么?

什么是区块链

区块链本质上是一个分布式账本技术。如果以数学函数来类比的话,我们可以将分布式网络、共识机制、去中心化、加密算祛、智能合约、权限许可、价值和资产等要素理解为函数中的变量或因子。这些变量和因子的有机组合形成了区块链有别于传统技术的些新的技术特征。 在对 区块链进行更加深入的技术解 读前,我们需要先对区块链中的一些核心概念进行梳理 。

更多解释:网页链接

写到这里,本文关于区块链与函数相结合和区块链的函数的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

标签: #区块链与函数相结合

  • 评论列表

留言评论