区块链项目管理的周期 工程项目管理与区块链

TLBC价格行情 250 0

今天给各位分享区块链项目管理的周期的知识,其中也会对工程项目管理与区块链进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

区块链可以应用到哪些领域?

金融应用: 区块链在金融领域有着天生的优势,在互联网上来说,这是区块链的基因决定的。

(1) 保险业务︰随着区块链技术的发展,未来关于个人的健康状况、事故记录等信息可能会上传至区块链中,使保险公司在客户投保时可以更加及时、准确地获得风险信息,从而降低核保成本、提升效率。区块链的共享透明特点降低了信息不对称,还可降低逆向选择风险;而其历史可追踪的特点,则有利于减少道德风险,进而降低保险的管理难度和管理成本。

(2) 资产证券化:这一领域业务痛点在于底层资产真假无法保证;参与主体多、操作环节多交易透明度低出现信息不对称等问题,造成风险难以把控。数据痛点在于各参与方之间流转效率不高、各方交易系统间资金清算和对账往往需要大量人力物力、资产回款方式有线上线下多种渠道,无法监控资产的真实情况,还存在资产包形成后,交易链条里各方机构对底层资产数据真实性和准确性的信任问题。

(3) 数字票据∶该领域痛点在于三个风险问题。操作风险,由于系统中心化,一旦中心服务器出问题,整个市场瘫痪;市场风险,根据数据统计,在2016年,涉及金额达到数亿以上的风险事件就有七件,涉及多家银行;道德风险,市场上存在"一票多卖"、虚假商业汇票等事件。区块链去中介化、系统稳定性、共识机制、不可篡改的特点,减少传统中心化系统中的操作风险、市场风险和道德风险 (4) 跨境支付∶该领域的痛点在于到账周期长、费用高、交易透明度低。以第三方支付公司为中心,完成支付流程中的记账、结算和清算,到账周期长,比如跨境支付到账周期在三天以上,费用较高。区块链去中介化、交易公开透明和不可篡改的特点,没有第三方支付机构加入,缩短了支付周期、降低费用、增加了交易透明度。

(5) 征信管理:该领域的痛点在于数据缺乏共享,征信机构与用户信息不对称;正规市场化数据采集渠道有限,数据源争夺战耗费大量成本;数据隐私保护问题突出,传统技术架构难以满足新要求等。在征信领域,区块链具有去中心化、去信任、时间戳、非对称加密和智能合约等特征,在技术层面保证了可以在有效保护数据隐私的基础上实现有限度、可管控的信用数据共享和验证。

(6) 供应链金融∶这一领域的痛点在于融资周期长、费用高。以供应链核心企业系统为中心,第三方增信机构很难鉴定供应链上各种相关凭证的真伪,造成人工审核的时间长、融资费用高。区块链去中介化、共识机制、不可篡改的特点,不需要第三方增信机构鉴定供应链上各种相关凭证的真实性,降低融资成本、减少融资的周期。

(7) 资产证券化∶这一领域业务痛点在于底层资产真假无法保证;参与主体多、操作环节多交易透明度低出现信息不对称等问题,造成风险难以把控。数据痛点在于各参与方之间流转效率不高、各方交易系统间资金清算和对账往往需要大量人力物力、资产回款方式有线上线下多种渠道,无法监控资产的真实情况,还存在资产包形成后,交易链条里各方机构对底层资产数据真实性和准确性的信任问题。区块链去中介化、共识机制、不可篡改的特点,增加数据流转效率,减少成本,实时监控资产的真实情况,保证交易链条各方机构对底层资产的信任问题。

应用:

(1)区块链+医疗∶医疗领域,区块链能利用自己的匿名性、去中心化等特征保护病人隐私。电子健康病例(EHR )、DNA钱包、药品防伪等都是区块链技术可能的应用领域。IBM在去年的报告中预测,全球56%的医疗机构将在2020年前将投资区块链技术。

(2)区块链+物联网∶物联网是一个非常宽泛的概念,如果将通信、能源管理、供应链管理、共享经济等涵盖在内,区块链技术的物联网应用将成为一个非常重要的应用领域。

(3)区块链+IP版权文化娱乐∶互联网发展的越来越好,数字音乐、数字图书、数字视频、数字游戏等逐渐成为了主流。知识经济的兴起使得知识产权成为市场竞争的核心要素。但当下的互联网生态里知识产权侵权现象严重,数字资产的版权保护成为了行业痛点。区块链去中介化、共识机制、不可篡改的特点,利用区块链技术,能将文化娱乐价值链的各个环节进行有效整合、加速流通,缩短价值创造周期;同时,可实现数字内容的价值转移,并保证转移过程的可信、可审计和透明,有效预防盗版等行为。

(4)区块链+公共服务教育∶在公共服务、教育、慈善公益等领域,档案管理、身份(资质)认证、公众信任等问题都是客观存在的,传统方式是依靠具备公信力的第三方作信用背书,但造假、缺失等问题依然存在。区块链技术能够保证所有数据的完整性、永久性和不可更改性,因而可以有效解决这些行业在存证、追踪、关联、回溯等方面的难点和痛点。

区块链项目的分类和应用有哪些?

从目前主流的区块链项目来看,区块链项目主要为四类:第一类:币类;第二类:平台类;第三类:应用类;第四类:资产代币化。

币类主要充当区块链资产领域的“交换媒介”,交换媒介指一般等价物,比如以前的黄金、银票等。(交易区块链资产上“币汇交易所”)

平台类项目是指建立技术平台,用于满足各种区块链应用开发,可以降低在区块链上开发应用的门槛。

应用类项目范围比较广泛,涵盖金融、社交、游戏、产权保护等诸多领域,也是目前区块链资产增长最快的领域。

资产代币化项目是指是实物资产的区块链映射,也就是实物资产上链,目前不超过10个品种。

01币类

第一类是币类项目,也是最早的区块链项目。币类项目主要包括比特币和莱特币等项目。此外,还有一类资产具有匿名的特点,主要功能包括实现支付的同时可以保护支付双方的隐私,比较知名的有达世币(Dash)、门罗币(Monero)及采用零知识证明的大零币(Zcash)等。币类主要充当区块链资产领域的“交换媒介”,交换媒介就是你用来换取商品的一般等价物,比如以前黄金、白银、银票可以作为交换媒介。目前全球的数字资产种类超过2100个品种,币类区块链项目数量近期增长较快,截止2018年6月市值最大的依旧是比特币。

02平台类

第二类是平台类区块链项目,平台类区块链项目主要功能为建立技术平台,满足各种区块链应用开发所需的技术要求;简单的说,平台类应用让开发者可以在区块链上直接发行数字资产,编写智能合约等。智能合约就是在区块链数据库上运行的计算机程序,可以满足其源代码设定条件下自动执行。

举个例子,你在区块链上开发一个基于房屋租金协议的智能合约,当业主收到租金时就会触发自动执行,并将公寓的安全密钥给到租户。

平台类区块链项目的主要功能是建立底层的技术平台,让开发者在底层技术平台上做应用开发,相当一部分平台尚处于开发状态当中,截止到2018年6月份,市值最大的是以太坊。

03应用类

第三类是应用类区块链项目,应用类项目就是基于区块链开发平台(例如以太坊)开发的能够解决实体经济各个领域诸多问题的区块链项目。

例如基于区块链的预测平台Augur,基于区块链的算力交易平台Golem,基于区块链的奢侈品溯源平台VeChain,基于区块链提供资产兑换及转移服务的OmiseGo。利用区块链技术,这些项目可以更好地解决信任问题、跨国界流通等问题,同时,利用区块链上的智能合约和代币,可以更好地实现自动执行,大大提高社会经济活动的效率。应用类区块链项目范围比较广泛,涵盖金融、社交、游戏、产权保护等诸多领域,也是目前区块链项目市值增值最快的领域。

04资产代币化

第四类是资产代币化区块链项目,资产代币化是指将区块链资产挂钩黄金和美元等实物资产,是实物资产的区块链映射,截至2018年2月不超过10个品种,比较典型的代表是对标美元的USDT,对标黄金的Digix Dao,DigixDAO每个代币代表 1 克由伦敦金银市场协会认证的黄金。资产代币化具有方便交易,便于保管等优势。首先,资产代币化更方便交易。因为区块链资产可以拆分,具有更好地流动性。

举个例子,目前房产需要整体转让,如果房产可以代币化,便可以拆分购买,更方便交易。其次,实物资产代币化更利于保管。黄金等在实物交易中,很容易形成磨损、造成损失,但是实物资产代币化后并不需要进行实物转移,更利于实物资产的保管。

区块链的共识机制

一、区块链共识机制的目标

区块链是什么?简单而言,区块链是一种去中心化的数据库,或可以叫作分布式账本(distributed ledger)。传统上所有的数据库都是中心化的,例如一间银行的账本就储存在银行的中心服务器里。中心化数据库的弊端是数据的安全及正确性全系于数据库运营方(即银行),因为任何能够访问中心化数据库的人(如银行职员或黑客)都可以破坏或修改其中的数据。

而区块链技术则容许数据库存放在全球成千上万的电脑上,每个人的账本通过点对点网络进行同步,网络中任何用户一旦增加一笔交易,交易信息将通过网络通知其他用户验证,记录到各自的账本中。区块链之所以得其名是因为它是由一个个包含交易信息的区块(block)从后向前有序链接起来的数据结构。

很多人对区块链的疑问是,如果每一个用户都拥有一个独立的账本,那么是否意味着可以在自己的账本上添加任意的交易信息,而成千上万个账本又如何保证记账的一致性? 解决记账一致性问题正是区块链共识机制的目标 。区块链共识机制旨在保证分布式系统里所有节点中的数据完全相同并且能够对某个提案(proposal)(例如是一项交易纪录)达成一致。然而分布式系统由于引入了多个节点,所以系统中会出现各种非常复杂的情况;随着节点数量的增加,节点失效或故障、节点之间的网络通信受到干扰甚至阻断等就变成了常见的问题,解决分布式系统中的各种边界条件和意外情况也增加了解决分布式一致性问题的难度。

区块链又可分为三种:

公有链:全世界任何人都可以随时进入系统中读取数据、发送可确认交易、竞争记账的区块链。公有链通常被认为是“完全去中心化“的,因为没有任何人或机构可以控制或篡改其中数据的读写。公有链一般会通过代币机制鼓励参与者竞争记账,来确保数据的安全性。

联盟链:联盟链是指有若干个机构共同参与管理的区块链。每个机构都运行着一个或多个节点,其中的数据只允许系统内不同的机构进行读写和发送交易,并且共同来记录交易数据。这类区块链被认为是“部分去中心化”。

私有链:指其写入权限是由某个组织和机构控制的区块链。参与节点的资格会被严格的限制,由于参与的节点是有限和可控的,因此私有链往往可以有极快的交易速度、更好的隐私保护、更低的交易成本、不容易被恶意攻击、并且能够做到身份认证等金融行业必须的要求。相比中心化数据库,私有链能够防止机构内单节点故意隐瞒或篡改数据。即使发生错误,也能够迅速发现来源,因此许多大型金融机构在目前更加倾向于使用私有链技术。

二、区块链共识机制的分类

解决分布式一致性问题的难度催生了数种共识机制,它们各有其优缺点,亦适用于不同的环境及问题。被众人常识的共识机制有:

l PoW(Proof of Work)工作量证明机制

l PoS(Proof of Stake)股权/权益证明机制

l DPoS(Delegated Proof of Stake)股份授权证明机制

l PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

l DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

l SCP (Stellar Consensus Protocol ) 恒星共识协议

l RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

l Pool验证池共识机制

(一)PoW(Proof of Work)工作量证明机制

1. 基本介绍

在该机制中,网络上的每一个节点都在使用SHA256哈希函数(hash function) 运算一个不断变化的区块头的哈希值 (hash sum)。 共识要求算出的值必须等于或小于某个给定的值。 在分布式网络中,所有的参与者都需要使用不同的随机数来持续计算该哈希值,直至达到目标为止。当一个节点的算出确切的值,其他所有的节点必须相互确认该值的正确性。之后新区块中的交易将被验证以防欺诈。

在比特币中,以上运算哈希值的节点被称作“矿工”,而PoW的过程被称为“挖矿”。挖矿是一个耗时的过程,所以也提出了相应的激励机制(例如向矿工授予一小部分比特币)。PoW的优点是完全的去中心化,其缺点是消耗大量算力造成了的资源浪费,达成共识的周期也比较长,共识效率低下,因此其不是很适合商业使用。

2. 加密货币的应用实例

比特币(Bitcoin) 及莱特币(Litecoin)。以太坊(Ethereum) 的前三个阶段(Frontier前沿、Homestead家园、Metropolis大都会)皆采用PoW机制,其第四个阶段 (Serenity宁静) 将采用权益证明机制。PoW适用于公有链。

PoW机制虽然已经成功证明了其长期稳定和相对公平,但在现有框架下,采用PoW的“挖矿”形式,将消耗大量的能源。其消耗的能源只是不停的去做SHA256的运算来保证工作量公平,并没有其他的存在意义。而目前BTC所能达到的交易效率为约5TPS(5笔/秒),以太坊目前受到单区块GAS总额的上限,所能达到的交易频率大约是25TPS,与平均千次每秒、峰值能达到万次每秒处理效率的VISA和MASTERCARD相差甚远。

3. 简图理解模式

(ps:其中A、B、C、D计算哈希值的过程即为“挖矿”,为了犒劳时间成本的付出,机制会以一定数量的比特币作为激励。)

(Ps:PoS模式下,你的“挖矿”收益正比于你的币龄(币的数量*天数),而与电脑的计算性能无关。我们可以认为任何具有概率性事件的累计都是工作量证明,如淘金。假设矿石含金量为p% 质量, 当你得到一定量黄金时,我们可以认为你一定挖掘了1/p 质量的矿石。而且得到的黄金数量越多,这个证明越可靠。)

(二)PoS(Proof of Stake)股权/权益证明机制

1.基本介绍

PoS要求人们证明货币数量的所有权,其相信拥有货币数量多的人攻击网络的可能性低。基于账户余额的选择是非常不公平的,因为单一最富有的人势必在网络中占主导地位,所以提出了许多解决方案。

在股权证明机制中,每当创建一个区块时,矿工需要创建一个称为“币权”的交易,这个交易会按照一定比例预先将一些币发给矿工。然后股权证明机制根据每个节点持有代币的比例和时间(币龄), 依据算法等比例地降低节点的挖矿难度,以加快节点寻找随机数的速度,缩短达成共识所需的时间。

与PoW相比,PoS可以节省更多的能源,更有效率。但是由于挖矿成本接近于0,因此可能会遭受攻击。且PoS在本质上仍然需要网络中的节点进行挖矿运算,所以它同样难以应用于商业领域。

2.数字货币的应用实例

PoS机制下较为成熟的数字货币是点点币(Peercoin)和未来币(NXT),相比于PoW,PoS机制节省了能源,引入了" 币天 "这个概念来参与随机运算。PoS机制能够让更多的持币人参与到记账这个工作中去,而不需要额外购买设备(矿机、显卡等)。每个单位代币的运算能力与其持有的时间长成正相关,即持有人持有的代币数量越多、时间越长,其所能签署、生产下一个区块的概率越大。一旦其签署了下一个区块,持币人持有的币天即清零,重新进入新的循环。

PoS适用于公有链。

3.区块签署人的产生方式

在PoS机制下,因为区块的签署人由随机产生,则一些持币人会长期、大额持有代币以获得更大概率地产生区块,尽可能多的去清零他的"币天"。因此整个网络中的流通代币会减少,从而不利于代币在链上的流通,价格也更容易受到波动。由于可能会存在少量大户持有整个网络中大多数代币的情况,整个网络有可能会随着运行时间的增长而越来越趋向于中心化。相对于PoW而言,PoS机制下作恶的成本很低,因此对于分叉或是双重支付的攻击,需要更多的机制来保证共识。稳定情况下,每秒大约能产生12笔交易,但因为网络延迟及共识问题,需要约60秒才能完整广播共识区块。长期来看,生成区块(即清零"币天")的速度远低于网络传播和广播的速度,因此在PoS机制下需要对生成区块进行"限速",来保证主网的稳定运行。

4.简图理解模式

(PS:拥有越多“股份”权益的人越容易获取账权。是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。)

(在纯POS体系中,如NXT,没有挖矿过程,初始的股权分配已经固定,之后只是股权在交易者之中流转,非常类似于现实世界的股票。)

(三)DPoS(Delegated Proof of Stake)股份授权证明机制

1.基本介绍

由于PoS的种种弊端,由此比特股首创的权益代表证明机制 DPoS(Delegated Proof of Stake)应运而生。DPoS 机制中的核心的要素是选举,每个系统原生代币的持有者在区块链里面都可以参与选举,所持有的代币余额即为投票权重。通过投票,股东可以选举出理事会成员,也可以就关系平台发展方向的议题表明态度,这一切构成了社区自治的基础。股东除了自己投票参与选举外,还可以通过将自己的选举票数授权给自己信任的其它账户来代表自己投票。

具体来说, DPoS由比特股(Bitshares)项目组发明。股权拥有着选举他们的代表来进行区块的生成和验证。DPoS类似于现代企业董事会制度,比特股系统将代币持有者称为股东,由股东投票选出101名代表, 然后由这些代表负责生成和验证区块。 持币者若想称为一名代表,需先用自己的公钥去区块链注册,获得一个长度为32位的特有身份标识符,股东可以对这个标识符以交易的形式进行投票,得票数前101位被选为代表。

代表们轮流产生区块,收益(交易手续费)平分。DPoS的优点在于大幅减少了参与区块验证和记账的节点数量,从而缩短了共识验证所需要的时间,大幅提高了交易效率。从某种角度来说,DPoS可以理解为多中心系统,兼具去中心化和中心化优势。优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。缺点:投票积极性不高,绝大部分代币持有者未参与投票;另整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。

DPoS机制要求在产生下一个区块之前,必须验证上一个区块已经被受信任节点所签署。相比于PoS的" 全民挖矿 ",DPoS则是利用类似" 代表大会 "的制度来直接选取可信任节点,由这些可信任节点(即见证人)来代替其他持币人行使权力,见证人节点要求长期在线,从而解决了因为PoS签署区块人不是经常在线而可能导致的产块延误等一系列问题。 DPoS机制通常能达到万次每秒的交易速度,在网络延迟低的情况下可以达到十万秒级别,非常适合企业级的应用。 因为公信宝数据交易所对于数据交易频率要求高,更要求长期稳定性,因此DPoS是非常不错的选择。

2. 股份授权证明机制下的机构与系统

理事会是区块链网络的权力机构,理事会的人选由系统股东(即持币人)选举产生,理事会成员有权发起议案和对议案进行投票表决。

理事会的重要职责之一是根据需要调整系统的可变参数,这些参数包括:

l 费用相关:各种交易类型的费率。

l 授权相关:对接入网络的第三方平台收费及补贴相关参数。

l 区块生产相关:区块生产间隔时间,区块奖励。

l 身份审核相关:审核验证异常机构账户的信息情况。

l 同时,关系到理事会利益的事项将不通过理事会设定。

在Finchain系统中,见证人负责收集网络运行时广播出来的各种交易并打包到区块中,其工作类似于比特币网络中的矿工,在采用 PoW(工作量证明)的比特币网络中,由一种获奖概率取决于哈希算力的抽彩票方式来决定哪个矿工节点产生下一个区块。而在采用 DPoS 机制的金融链网络中,通过理事会投票决定见证人的数量,由持币人投票来决定见证人人选。入选的活跃见证人按顺序打包交易并生产区块,在每一轮区块生产之后,见证人会在随机洗牌决定新的顺序后进入下一轮的区块生产。

3. DPoS的应用实例

比特股(bitshares) 采用DPoS。DPoS主要适用于联盟链。

4.简图理解模式

(四)PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

1. 基本介绍

PBFT是一种基于严格数学证明的算法,需要经过三个阶段的信息交互和局部共识来达成最终的一致输出。三个阶段分别为预备 (pre-prepare)、准备 (prepare)、落实 (commit)。PBFT算法证明系统中只要有2/3比例以上的正常节点,就能保证最终一定可以输出一致的共识结果。换言之,在使用PBFT算法的系统中,至多可以容忍不超过系统全部节点数量1/3的失效节点 (包括有意误导、故意破坏系统、超时、重复发送消息、伪造签名等的节点,又称为”拜占庭”节点)。

2. PBFT的应用实例

著名联盟链Hyperledger Fabric v0.6采用的是PBFT,v1.0又推出PBFT的改进版本SBFT。PBFT主要适用于私有链和联盟链。

3. 简图理解模式

上图显示了一个简化的PBFT的协议通信模式,其中C为客户端,0 – 3表示服务节点,其中0为主节点,3为故障节点。整个协议的基本过程如下:

(1) 客户端发送请求,激活主节点的服务操作;

(2) 当主节点接收请求后,启动三阶段的协议以向各从节点广播请求;

(a) 序号分配阶段,主节点给请求赋值一个序号n,广播序号分配消息和客户端的请求消息m,并将构造pre-prepare消息给各从节点;

(b) 交互阶段,从节点接收pre-prepare消息,向其他服务节点广播prepare消息;

(c) 序号确认阶段,各节点对视图内的请求和次序进行验证后,广播commit消息,执行收到的客户端的请求并给客户端响应。

(3) 客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果;

(五)DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

1. 基本介绍

DBFT建基于PBFT的基础上,在这个机制当中,存在两种参与者,一种是专业记账的“超级节点”,一种是系统当中不参与记账的普通用户。普通用户基于持有权益的比例来投票选出超级节点,当需要通过一项共识(记账)时,在这些超级节点中随机推选出一名发言人拟定方案,然后由其他超级节点根据拜占庭容错算法(见上文),即少数服从多数的原则进行表态。如果超过2/3的超级节点表示同意发言人方案,则共识达成。这个提案就成为最终发布的区块,并且该区块是不可逆的,所有里面的交易都是百分之百确认的。如果在一定时间内还未达成一致的提案,或者发现有非法交易的话,可以由其他超级节点重新发起提案,重复投票过程,直至达成共识。

2. DBFT的应用实例

国内加密货币及区块链平台NEO是 DBFT算法的研发者及采用者。

3. 简图理解模式

假设系统中只有四个由普通用户投票选出的超级节点,当需要通过一项共识时,系统就会从代表中随机选出一名发言人拟定方案。发言人会将拟好的方案交给每位代表,每位代表先判断发言人的计算结果与它们自身纪录的是否一致,再与其它代表商讨验证计算结果是否正确。如果2/3的代表一致表示发言人方案的计算结果是正确的,那么方案就此通过。

如果只有不到2/3的代表达成共识,将随机选出一名新的发言人,再重复上述流程。这个体系旨在保护系统不受无法行使职能的领袖影响。

上图假设全体节点都是诚实的,达成100%共识,将对方案A(区块)进行验证。

鉴于发言人是随机选出的一名代表,因此他可能会不诚实或出现故障。上图假设发言人给3名代表中的2名发送了恶意信息(方案B),同时给1名代表发送了正确信息(方案A)。

在这种情况下该恶意信息(方案B)无法通过。中间与右边的代表自身的计算结果与发言人发送的不一致,因此就不能验证发言人拟定的方案,导致2人拒绝通过方案。左边的代表因接收了正确信息,与自身的计算结果相符,因此能确认方案,继而成功完成1次验证。但本方案仍无法通过,因为不足2/3的代表达成共识。接着将随机选出一名新发言人,重新开始共识流程。

上图假设发言人是诚实的,但其中1名代表出现了异常;右边的代表向其他代表发送了不正确的信息(B)。

在这种情况下发言人拟定的正确信息(A)依然可以获得验证,因为左边与中间诚实的代表都可以验证由诚实的发言人拟定的方案,达成2/3的共识。代表也可以判断到底是发言人向右边的节点说谎还是右边的节点不诚实。

(六)SCP (Stellar Consensus Protocol ) 恒星共识协议

1. 基本介绍

SCP 是 Stellar (一种基于互联网的去中心化全球支付协议) 研发及使用的共识算法,其建基于联邦拜占庭协议 (Federated Byzantine Agreement) 。传统的非联邦拜占庭协议(如上文的PBFT和DBFT)虽然确保可以通过分布式的方法达成共识,并达到拜占庭容错 (至多可以容忍不超过系统全部节点数量1/3的失效节点),它是一个中心化的系统 — 网络中节点的数量和身份必须提前知晓且验证过。而联邦拜占庭协议的不同之处在于它能够去中心化的同时,又可以做到拜占庭容错。

[…]

(七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

1. 基本介绍

RPCA是Ripple(一种基于互联网的开源支付协议,可以实现去中心化的货币兑换、支付与清算功能)研发及使用的共识算法。在 Ripple 的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。

Ripple 的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为 UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。共识过程如下:

(1) 每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。

(2) 每个验证节点把自己的交易候选集作为提案发送给其他验证节点。

(3) 验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。

(4) 验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤(3)、步骤(4),直到阈值达到80%。

(5) 验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(last closed ledger),即账本最后(最新)的状态。

在Ripple的共识算法中,参与投票节点的身份是事先知道的,因此,算法的效率比PoW等匿名共识算法要高效,交易的确认时间只需几秒钟。这点也决定了该共识算法只适合于联盟链或私有链。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。

2. 简图理解模式

共识过程节点交互示意图:

共识算法流程:

(八)POOL验证池共识机制

Pool验证池共识机制是基于传统的分布式一致性算法(Paxos和Raft)的基础上开发的机制。Paxos算法是1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现。Raft则是在2013年发布的一个比Paxos简单又能实现Paxos所解决问题的一致性算法。Paxos和Raft达成共识的过程皆如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。Paxos和Raft的区别在于选举的具体过程不同。而Pool验证池共识机制即是在这两种成熟的分布式一致性算法的基础上,辅之以数据验证的机制。

BIM+区块链,让城市建设更智慧

这篇文章,我们聊聊区块链和建筑行业的结合及应用。

在开始正文之前,先解释一下BIM的概念。

BIM (Building Information Modeling) 建筑信息模型化。美国国家BIM标准里面对BIM做了如下的解释:

(1) 以数位化方法表达一个设施的物理和功能特性。

(2) 一个共享的知识资源。

(3) 分享跟这个设施相关的信息,在设施的整个生命周期中为所有的对策提供可靠依据的过程。

(4) 在建设项目的不同阶段中,各参与者经由在信息模型中嵌入、提取、更新和修改信息,以支持与反应各自职责的协同作业。

建筑业是当今全球范围最大的行业之一,未来依然将是世界经济增长的关键驱动力。

建筑业在我国国民经济中的地位举足轻重。国家统计局数据显示,2020年我国国内生产总值为 101万亿 元,其中建筑业总产值为 26万亿 ,占比超过 25% 。

建筑业是一个古老的行业,早在2000多年前的古人就修筑了万里长城、古埃及的金字塔这样的宏伟工程。但是发展至今,建筑业的整体管理水平和效率依然很低,其主要原因大概可归结为以下五点:

1)项目的一次性;

2)组织的松散性和临时性;

3)管理的碎片化;

4)合作的多方性和低效性;

5)生产过程的非标准化和非工业化。

以上原因带来的问题也显而易见:

1) 信任缺失 ,由于项目的一次性、组织的临时性、合作的多方性,带来不可避免的信任缺失。

2) 效率低下 ,由于组织的松散型和临时性,生产过程的非标准化和非工业化,高耗低效,整个建筑行业施工企业的利润水平平均只有3%左右

3) 风险可控性弱 ,由于缺乏系统性的标准化管理体系、管理碎片化,导致工程延期、设计变更、费用索赔几乎每个项目都不可避免。

国内建筑信息化经历了三个阶段,目前正处于第三阶段:

第一阶段: 设计信息化 ,90年代“甩图板”工程推动国内 CAD 技术应用的普及;

第二阶段: 企业信息化管理 ,2005年计算机辅助管理问题解决实现项目和企业管理信息化;

第三阶段: 全生命周期信息化 ,2015年BIM 技术的应用助力建筑业全生命周期信息集成。

1.为何要在建筑领域实施BIM?

住建部 在《 住房城乡建设部关于印发推进建筑信息模型应用指导意见的通知 》中对BIM应用的意义有详细解释,指导意见指出: BIM要为产业链贯通、工业化建造和繁荣建筑创作提供技术保障。也就是说BIM是建筑业工业化转型的技术基础 。

2.BIM具体能干什么?

1)实现建筑全生命期各参与方在同一多维建筑信息模型基础上的数据共享;

2)支持对工程环境、能耗、经济、质量、安全等方面的分析、检查和模拟;

3)为项目全过程的方案优化和科学决策提供依据;

4)支持各专业协同工作、项目的虚拟建造和精细化管理。

3.建筑工业化的意义

1)工业化生产的材质和装配式的建造方式更容易形成一套规范化系统,确保产品品质;

2)装配式建筑的大部分构件均在工厂完成,整体交付比传统建筑快 30%~50%;

3)装配式建筑现场以干法作业为主,可有效减少能源消耗以及环境污染,低碳环保;

4)装配式建筑由于其可拆除的特性还可以实现重复利用;

5)装配式建造成本的下降空间就目前而言,远高于传统建筑,后期运维费用更低,全生命周期具有更大的成本优势。

建筑工业化转型已成为国家级战略

住建部等各部位近年来陆续出台多项促进建筑业工业化、数字化、绿色建造、智能建造的重要政策。

2021年3月,国务院发布了《十四五规划和2035年远景目标纲要》,纲要明确提出要 发展智能建造,推广绿色建材、装配式建筑和钢结构住宅,建设低碳城市的发展目标 。

4.建筑业BIM数字化的重要意义

大力发展建筑工业化、数字化、智能化升级,加大智能建造在工程建设各环节应用,实现建筑业转型升级是建筑业乃至国家近10到20年的战略目标。因此,BIM数字化技术在本次建筑业转型升级过程中必将起到基础性重要作用。

建筑工业化转型的方向是 标准化+工厂化+装配式 ,BIM解决的是这个过程中的 数字集成及可视化 问题。

虽然BIM是建筑业工业化转型过程中不可或缺的技术,但是它并不能有效解决生产关系的问题,比如协作多方之间的信任、效率、复杂体系下的碎片化管理等问题。

而解决信任、协作、效率、复杂体系下的碎片化管理恰恰是区块链技术的天然优势,能够很好的与BIM技术形成互补。

因此我们说: 工业化生产(BIM支持)+数字化协作(区块链支持)+大数据决策(AI技术)=智慧建造

我们把建筑全寿命周期分为规划设计、建造、运维三个阶段来举例说明

1.规划设计阶段

跨部门协作审批将是区块链技术应用的主要场景。

规划设计阶段的特点是行政监管角色多,协作审批手续多,区块链技术的去中心化特征恰好适配此类场景,可以极大的提高协作审批效率(多地政府已开始了区块链政务审批系统的试点)。

我们假设规划设计阶段的监管单位有发改委、国土、交通、住建、水利等,再者相关单位包括建设单位、规划设计等咨询单位,他们在区块链上都有各自的节点,并且各自都有自己的信息化管理系统。

当咨询单位创建好第一阶段的BIM概念模型(比如适用于项目建议书),并加载GIS信息、规模、占地、造价等各项经济指标,将模型数据上区块链。

BIM概念模型及项目建议书经建设单位确认后,由建设单位向发改委启动审批手续,区块链智能合约自动发起所有审核流程。

发改委通过密钥访问区块链上BIM概念模型,必要时加载周边基础设施的BIM模型及GIS信息,分析该项目是否符合城市发展总体规划及项目的可行性,将审批结果上区块链,智能合约自动将审批结果的数据文件发送回建设单位。

同样,建设单位启动土地预审相关手续办理,智能合约启动,国土部门通过密钥访问区块链上的BIM占地模型,并进行审查,将审批结果上区块链,智能合约将批复结果的数据文件发送回建设单位。

与此同时,任何监管部门都可通过密钥验证发改委、国土等部门审批结果的真实性。

随着后续可行性研究、初步设计、施工图设计不断对模型的完善,发改委、国土、交通、住建等行业监管部门随时可以通过密钥访问区块链上该项目的BIM模型数据,实时监测项目有没有违规设计、建造。

所有审批工作的流程在线上自动运行,但不再是基于一个中心化的平台,而是基于去中心化的区块链技术,可有效降低协作成本,提高协作效率,并保证数据的隐私和安全。

2.建造阶段

同样我们假设施工单位、监理单位及其他第三方咨询机构在区块链上也有自己的节点,也都有自己的信息化系统,那么他们都可以通过密钥访问区块链上该项目的BIM模型数据。

我们简单地把建造过程分为计划、采购、生产、验收、支付几个环节。并且假设模型和施工阶段的WBS分解结构是一一对应的。

· 计划环节:

承包人可以通过Office系列的Projec软件,或者国内广联达的斑马进行计划编制,将计划数据文件导入区块链上的BIM模型,BIM模型就有了4D的进度可视化属性(如Autodesk系列的InfraWorks可展示),数据中还可以包括资源、资金等计划。所有参建方都可以基于该BIM模型同步开展项目管理。

· 采购环节:

建筑行业具有高度分散和复杂的供应链体系,供应商和承包人的合作可能是临时性的或者一次性的,因此信任较难建立、协作效率较低。

我们先说区块链是如何解决交易的信任问题的。

区块链是用智能合约来完成交易的,比如对于买方,交易之前智能合约首先检测买方数字钱包(央行数字人民币)的余额(抑或者银行授信、担保额度)是否满足交易标的,如果满足则锁定,当买方验收并签收了卖方的货物后,智能合约将锁定的数字人民币点对点自动汇入卖方的数字钱包。

因此区块链解决的并不是买卖双方的互信问题,而是信任已经不再是问题了。

建筑工程中砂石材料用量大,而且采购频繁、来源分散,是建材供应链中最不易掌控的材料之一。

我们假设承包人在料仓中安装了摄像头,承包人的采购系统通过摄像头检测出料仓余料低于预定的阈值(计算机视觉识别技术),系统调用计划数据(Project导入BIM模型的数据)发现未来的用量需求大于料仓总容量,则启动智能合约自动完成砂石料的订单,甚至可以从多个供应商中选择价格最低的。

砂石料供应商不需要加入任何系统,只需要在区块链节点上创建自己的账户就可以完成与承包人的自动化交易协作。

在运输过程中,供应商将运输车辆或船舶的GPS位置通过IOT硬件实时上区块链,承包人的采购系统就可以通过密钥实时追踪到货物的位置,系统可以对材料供货时间是否对生产计划造成影响进行分析(搜索算法),以便重新启动智能合约进行补救。

每一批材料的采购批次、到货时间都可以写入BIM模型对应的位置并写入区块链账本,智能合约将提醒监理单位按材料到场批次组织验收或试验检测工作。

系统可以把项目经理从繁杂的订单、询价、账务处理中解脱出来,更好的投入到更重要的事项上。

· 生产环节:

生产过程必然离不开人和设备。

工业化的一个必然的结果就是效率和质量的提高,而人和设备的过程行为质量将决定产品质量的形成过程。

因此过去以结果为导向的施工过程管理必然要转向工业化的以过程为导向的施工管理,那么每一个分项工程由哪些个班组生产,对每一组混凝土的施工配合比参数进行实时(IOT硬件)监测并写入BIM模型对应的位置,同时将这些数据写入区块链账本,永久保存、不可篡改,生产过程的所有数据应该真实、可信。

我们假设大型构建由吊装设备进行安装,再假设如果在暴雨天气、或者风力超过六级的情况下不适合吊装作业,那么吊装设备通过IOT硬件(或者网络通讯)感应到这种极限状态后,区块链智能合约将提醒现场管理人员将设备恢复到安全状态,直至危险状态解除。

生产过程中每一台设备运行的油耗、用电将通过IOT硬件进行监测,并将这些数据写入区块链账本。

区块链智能合约自动对耗能进行碳排放指标计算(GBT 51366-2019),一旦发现碳排放超过了核定指标,自动在碳交易市场购买新的指标。

前面提到的所有生产设备上的IOT硬件都无需接入参建各方的系统,参建各方只需要通过设备的密钥就可以进行数据访问。也许这个密钥被设备开发商设计成了一个客户端(如APP),那么参建各方只需要安装一个客户端就可以访问设备生成的所有数据。

· 验收环节

我们假设混凝土构建的强度由试验设备(IOT硬件)将数据直接写入BIM模型对应的位置,并写入区块链账本。

构建的外观尺寸、钢筋数量或许可以利用三维激光扫描设备生成点云,与BIM设计模型进行比对,可以根据质量检验评定标准精确计算出蜂窝麻面的百分比,验收精度将远高于人工计算的精度,写入BIM模型的对应位置和区块链账本。

所有参与验收的人员和数据写入区块链账本后永久保存,不可篡改。

假如发生质量问题,区块链上的账本记录就像按时间顺序排列的一笔流水账,从当前记录开始一直向前追溯,谁验收的?谁制造的?谁运输的?谁采购的?谁供应的一目了然。

· 支付阶段:

随着数字人民币的正式发行,并且支持可编程性,当数字人民币进入工程款支付领域后,可以说每一笔工程款的去向已基本固定,都可以在区块链进行追踪,根本不可能发生工程款挪用现象。那么当工程质量经过验收合格,符合智能合约设定的条件,则自动触发智能合约点对点的支付操作。不再经过银行,还可以降低企业的财务成本。

因此根据基本建设程序的规定,未来资金未落实的项目必然得不到开工审批,获得开工审批的项目,承包人、专业分包人、材料供应商甚至劳务人员再也无需担心拖欠工程款的问题了。

当BIM模型与实体建筑物实施锚定,实现数字资产化后,数字资产的所有权在区块链就可以实现流动。

我们假如一个实体工程构件在业主尚未支付工程款以前的所有权还暂时保留在承包人手里,当一个承包人资金出现困难,恰好区块链上的BIM数字资产(锚定了实体工程构件)证明了一定的未来收益(业主未来支付的一笔工程款),那么承包人完全可以将这部分数字资产的所有权进行抵押贷款,智能合约可以锁定未来业主支付的那一笔工程款,用于承包人赎回该笔数字资产的所有权。

3. 运维阶段

在运维阶段很好的一个场景就是设备与设备之间的智能交互。

我们假设一台无人驾驶的巡逻车通过计算机视觉识别系统发现公路上沥青路面的一处缺陷,触发智能合约启动另外一台沥青路面维修车,该维修车同样用智能合约自动下单采购所需要的沥青混合料修复材料,并自动行驶至缺陷处完成修复,在此过程中只有少量的或者根本无需人的干预。

综上所述,区块链技术+BIM可以更好地实现智慧建造,反过来BIM模型又可以作为区块链技术的数据仪表盘,随着IOT硬件的不断涌现(尤其在运维阶段),数据的不断填充,模型的不断刷新,维度越来越饱满,所见即所得,区块链+BIM将会成为一个更加智慧的智慧建造决策系统。

文章中我们列举了规划设计、建造、运维三个阶段中一些点的应用,而现实中的应用场景远不止这些例子,这些例子也仅仅起到以点带面的探讨。

文章中提到的所有技术都是现今已有的或是已经实现的功能(如区块链政务系统、供应链追踪,质量溯源等),欠缺的只是把这些技术整合起来,就像区块链技术原本也不是一项新技术,而是把分布式存储、非对称加密、共识算法等计算机现有技术整合起来,成就了这一伟大发明。

也许有人会说,BIM正向设计在我国建筑行业还未普及,基于BIM的4D、5D数字化建造管理才开始普及,此时探讨区块链技术+BIM的智慧化建造是不是为时过早?

而我想说的是,

BIM的概念早在1975年美国乔治亚理工大学ChuckEastman博士就提出了,2002年Autodesk公司正式提出BIM理念和技术,从3D的可视化开始已经发展到了今天8D的概念。

区块链技术也是早在2008年由中本聪提出,至今除了数字货币,在其他非数字货币领域也有了极为广泛的应用。

就像人工智能技术,

1956年由计算机专家约翰·麦卡锡首次提出,但一直受限于计算机技术和硬件止步不前,直至2012年的ImageNET挑战赛中视觉识别准确率达到95%以上,超越人眼的极限,在突破了计算机硬件和技术限制之后人工智能技术的应用迎来了大爆发,才有了近年来我们手机中美颜相机、语音识别、智能推送等生活应用的集中爆发。

所以说,任何一项技术,在它大规模应用爆发前,能量一直在积累,这是一个必经的过程。一方面可能是技术、硬件的限制,另一个很重要的原因就是懂得人太少、参与的人太少,一旦大家都懂了、都会了,这种爆发力就会自然而然的蓬勃出来。

就像我们在不停地吹一个气球,总有一天它会炸开 。

如果你也对区块链应用感兴趣,搜索微信公众号“ Candy链上笔记 ”,我们一起前行。

区块链如何应用区块链应该怎样应用

1、金融领域:

区块链在国际汇兑、信用证、股权登记和证券交易所等金融领域有着潜在的巨大应用价值。将区块链技术应用在金融行业中,能够省去第三方中介环节,实现点对点的直接对接,从而在大大降低成本的同时,快速完成交易支付。

2、物联网和物流领域:

区块链在物联网和物流领域也可以天然结合。通过区块链可以降低物流成本,追溯物品的生产和运送过程,并且提高供应链管理的效率。该领域被认为是区块链一个很有前景的应用方向。

3、公共服务领域:

区块链在公共管理、能源、交通等领域都与民众的生产生活息息相关,但是这些领域的中心化特质也带来了一些问题,可以用区块链来改造。区块链提供的去中心化的完全分布式DNS服务通过网络中各个节点之间的点对点数据传输服务就能实现域名的查询和解析,可用于确保某个重要的基础设施的操作系统和固件没有被篡改,可以监控软件的状态和完整性,发现不良的篡改,并确保使用了物联网技术的系统所传输的数据没用经过篡改。

4、数字版权领域:

通过区块链技术,可以对作品进行鉴权,证明文字、视频、音频等作品的存在,保证权属的真实、唯一性。作品在区块链上被确权后,后续交易都会进行实时记录,实现数字版权全生命周期管理,也可作为司法取证中的技术性保障。例如,美国纽约一家创业公司MineLabs开发了一个基于区块链的元数据协议,这个名为Mediachain的系统利用IPFS文件系统,实现数字作品版权保护,主要是面向数字图片的版权保护应用。

5、保险领域:

在保险理赔方面,保险机构负责资金归集、投资、理赔,往往管理和运营成本较高。通过智能合约的应用,既无需投保人申请,也无需保险公司批准,只要触发理赔条件,实现保单自动理赔。一个典型的应用案例就是LenderBot,是2016年由区块链企业Stratumn、德勤与支付服务商Lemonway合作推出,它允许人们通过FacebookMessenger的聊天功能,注册定制化的微保险产品,为个人之间交换的高价值物品进行投保,而区块链在贷款合同中代替了第三方角色。

6、公益领域:

区块链上存储的数据,高可靠且不可篡改,天然适合用在社会公益场景。公益流程中的相关信息,如捐赠项目、募集明细、资金流向、受助人反馈等,均可以存放于区块链上,并且有条件地进行透明公开公示,方便社会监督。

区块链项目管理师有些什么课程?

推动区块链行业发展,满足全社会区块链行业人才市场需求势在必行。为顺应时代发展“区块链项目管理咨询师”课程,

区块链

第一章区块链技术

一、什么是区块链

二、区块链的发展历史

三、区块链的技术原理

四、区块链的技术应用

第二章区块链投资

一、区块链思维认知

二、区块链的交易流程

三、区块链项目投资

四、股权投资与区块链投资

第三章区块链运营

一、项目技术与安全性分析

二、项目应用场景可落地分析

三、通证分配机制

四、项目社区建设

链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

关于区块链项目管理的周期和工程项目管理与区块链的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签: #区块链项目管理的周期

  • 评论列表

留言评论