本篇文章给大家谈谈区块链和高速公路融合,以及区块链和高速公路融合的意义对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
区块链与隐私计算的结合是必然趋势吗?
区块链与隐私计算的结合是必然趋势吗?
我们目前对这个问题的思考框架是:如果不与隐私计算技术结合,区块链技术的应用是 否受到限制、无法向前发展;如果不与区块链技术结合,隐私计算技术是否受到限制、无法 向前发展。如果二者对彼此都是刚需,那么它们相结合的趋势就是必然。
以下为我们对这个问题的思考:
1、隐私计算技术的应用是否区块链技术的刚需
区块链技术有巨大的优势,但是如果没有隐私计算技术,区块链技术的应用会大大受到 限制,因为无法解决链上数据的隐私保护问题,这使得大量涉及敏感数据的场景不愿应用区 块链技术,比如金融和医疗领域。
(1)区块链技术的局限性
第一,链上数据公开透明,数据的合规处理和隐私保护能力不足 区块链作为分布式账本系统,数据的公开透明尽管有利于存证、防篡改,但也存在数据 可轻易被复制、泄漏个人隐私的风险。区块链在公有链上要求不同节点对交易和交易状态进 行验证、维护,形成共识,因此每个参与者都能拥有完整的数据备份,所有的交易数据公开 透明。如果知道某个参与者的账户,就很容易获取其每一笔交易记录,从而据此推断其 社会 身份、财产状况等。以消费场景为例,平台之间存在竞争壁垒,用户也希望保留消费隐私, 因此区块链缺乏对用户流水、物流信息、营销情况等与企业、个人隐私相关的数据缺乏保护 能力,往往导致数据拥有方不愿意让数据进入流通环节。在链上系统的交易不再受中心账本的控制,用户通过使用唯一的私钥进行交易,交易过 程被加密且加密前数据很难还原,仅以私钥作为交易凭证使得区块链内的交易变得更加匿名 和不可控。在分布式账本系统上,所有的转账以地址形式进行,一但发生了诈骗或者洗钱等 金融犯罪,即便可以公开查询地址,但对资金追踪的难度极大,且私钥作为交易凭证很难证 明使用者的身份,因此许多企业、个人通过区块链进行洗钱等违法交易,不利于数据的合规 处理和合法共享。
第二,数据处理能力不足,制约技术的进一步落地和商业化拓展 链上计算受限于网络共识的性能,使得链上交易难以具备实时性和高效率,区块链智能 合约的计算能力需要扩展。以最大的加密支付系统比特币为例,每秒钟只能够处理大约 3 到 7 笔交易5 ,且当前产生的交易的有效性受网络传输影响,往往需要等待 10 分钟左右的记账周 期才能让网络上的节点共同知道交易内容。此外,如果链上有两个及以上节点同时竞争到记账权力,则还需要等待下一个记账周期才能确认交易的准确性,最终由区块最长、记账内容 最多的链来完成确认。
完全去中心化的系统与现实中大部分现有体系的兼容性不足,缺乏链上链下协同、多业 务发展的系统和功能,制约区块链技术的进一步落地。在区块链的技术落地过程中,首先, 各行业本身具有成熟的体系,区块链完全去中心化的形式不一定适合所有的领域和行业;其 次,区块链的平台设计和实际运行成本巨大,其所具备的低效率和延迟性的交易缺陷非常明 显,是否能够弥补原系统更换的损失需要经过一定的精算和比较;此外,使用区块链存储数 据需要对原有数据格式进行整理,涉及到政务、司法领域的敏感数据,更需要建立链接线上 和线下数据的可信通道防止数据录入有误,这带来了较高的人力、物力成本。
(2)隐私计算技术对区块链技术的帮助
隐私计算技术保障数据从产生、感知、发布、传播到存储、处理、使用、销毁等全生命 周期过程中的隐私性,弥补区块链技术的隐私保护能力,实现数据的“可用不可见”。通过 引入隐私计算技术,用户的收支信息、住址信息等个人数均以密文的形式呈现,在平台进行 数据共享的过程中,既能防止数据泄露,又能够保障用户个人隐私的安全,有利于进一步打 破数据孤岛效应,推动更大范围内的多方数据协作。隐私计算技术可与区块链技术形成技术组合,提升数据处理能力、扩大可应用范围。隐 私计算技术通过对数据进行规范化处理,能够提升数据处理、数据共享的效率,提升区块链 的数据处理能力。此外,隐私计算技术+区块链技术的技术组合能够应用于缺乏中心化系统、 但又对敏感数据分享有强烈需求的合作领域,扩展区块链技术的应用场景。
区块链技术的应用是否隐私计算技术的刚需
(1)隐私计算技术的局限性
第一,数据共享缺乏安全检验,制约数据流通的可信性
数据共享的整个流程涉及到采集、传输、存储、分析、发布、分账等多个流程,隐私计 算主要是解决全流程的数据“可用不可见”的问题,但是难以保证数据来源可信和计算过程 可信。
从数据来源可信的角度来说,在数据采集的环节,数据内容本身可能不完整,数据的录 入可能会存在失误;在数据传输的环节,数据的传输可能会被其他的客户端攻击,导致数据 在传输的过程中泄漏;在数据的储存环节,储存数据的角色方有可能会篡改数据或者将数据 复制转卖到黑市,这些都不会被隐私计算技术记录。如果无法保证数据共享各方的身份得到 “可信验证”,就有可能导致数据的隐私“名不副实”。从计算过程可信的角度来说,在数 据分析和发布的环节,数据的共享方有可能私自篡改数据的运行结果和发布内容,对最终数 据处理的结果进行造假。因此,一旦信息经过验证并添加到隐私计算的环境中,很难发现数 据是否被篡改、被泄漏,很难防止不同时间点不同节点的数据造假的情况,在涉及到金融、政务、医疗、慈善等关键领域里,如果数据有误则产生的一系列法律问题则难以追究。
第二,业务水平整体层次不齐,制约技术平台的扩展
当前,隐私计算的技术实现路径主要分为三种:多方安全计算、联邦学习、TEE 可信执行 环境。三种技术路径存在各自的应用缺陷和问题,由于行业内不同公司对于技术的掌握能力 和研发能力有限,导致技术平台的实际应用范围有限,可扩展能力不足。
多方安全计算尽管具有复杂高标准的密码学知识,但其计算性能在实际应用的过程中存 在效率低的缺陷。随着应用规模的扩大,采用合适的计算方案保证运算时延与参与方数量呈 现线性变化是目前各技术厂商面临的一大挑战。多方安全计算虽然能保证多方在数据融合计 算时候的隐私安全,但是在数据的访问、控制、传输等环节,仍然需要匹配其他的技术手段 防止数据泄露、篡改。
联邦学习技术目前在业内的应用通常以第三方平台为基础模型,在基础模型之上进行隐 私计算,这样的基础模型本身存在被开发者植入病毒的隐患。此外,联邦学习的机制默认所 有的参与方都是可信方,无法规避某个参与方恶意提供虚假数据甚至病害数据,从而对最终 的训练模型造成不可逆转的危害。由于联邦学习需要各个参与式节点进行计算,因此节点的 计算能力、网络连接状态都将限制联邦学习的通信效率。
TEE 可信执行环境在国内目前核心硬件技术掌握在英特尔、高通、ARM 等少数外国核心供 应商中,如果在关键领域从国外购买,则存在非常高的安全风险和应用风险。第三,数据共享缺乏确权机制,制约数据流通的应用性 隐私计算通过使用多方数据共同计算、产生成果,然而在实际合作的过程中,由于各个 数据共享方业务水平不同、数据质量不一导致在数据处理的每一个环节难以实现合理的确权。
按照常规的利益分配机制,拥有高质量数据、高成果贡献率的数据拥有方理应从中获取更多 的利润,但是隐私计算仅考虑到数据的“可用不可见”,数据共享方难以从最终结果来判断 谁的数据对于成果的贡献最大,造成利益分配的不公平。如果缺乏合理的成果贡献评估机制和利益分配机制,就会难以激励数据所有者和其他数 据持有者进行合作。尤其是在不信任的多方合作的场景下,会更加增加合作的信任成本,使 得多方协作难以达成,制约数据流通的实际应用性。
(2)区块链技术对隐私计算技术的帮助
区块链技术通过数据流通的所有环节、所有参与者进行记录,实现数据共享流程中的权 责分明,提升了数据流通的可信性。在数据传输的环节,区块链记录数据的提供者,确认数 据提供方身份的真实性和有效性,有利于数据确权,为公平可行的利益分配机制提供参考;在数据储存的环节,区块链保证数据的每一次修改都有迹可循,防止数据的恶意篡改。区块 链技术可作为隐私计算技术的底层平台,保证了加密数据本身的真实有效性,提升了隐私计 算平台里数据流通的可信性,拓展隐私计算技术的应用范围。
3. 结论
隐私计算技术和区块链技术的融合是必然的趋势。对于数据资产的流转来讲,没有隐私 计算,不能解决数据本身的安全和隐私保护问题;没有区块链,不能解决数据的确权问题以 及在更大范围内的数据网络协作问题。将区块链和隐私计算二者结合起来,建设大规模数据 流通网络,在目前的实践中成为有所共识的 探索 方向。
区块链与隐私计算的结合会改变什么?
1、形成大规模数据流通网络和数据要素市场
当前,数据流通存在三方面问题:数据拥有方的数据保护和数据确权难以实现;不同来 源数据的整合处理成本过高、缺乏统一标准;数据利益的分配机制不完善。
如前文所述,区块链和隐私计算技术相结合,可以一方面解决隐私保护问题,一方面解 决数据确权和多方协作问题,从而建立大规模的数据流通网络。
在大规模数据流通网络建立的基础上,真正意义上的数据要素市场才能够形成,数据作 为生产要素的价值才能够被充分发掘出来。
2、推动数据资产化的发展
所谓资产,是指由企业过去的交易或事项形成的,由企业拥有或者控制的,预期会给企 业带来经济利益的资源。
数据的资产化就是让数据在市场上发现价值,能够为企业创造新的经济益。
大规模数据流通网络和数据要素市场的形成,将大大推动数据价值的发现、数据资产化 的发展。
从企业一侧来看,企业的生产经营活动当中沉淀下来的数据会成为宝贵的资产。一方面, 对这些数据的分析和运用,将推动企业改善自身的业务;另一方面,与外部机构进行数据的 共享,能够推动数据发挥出更大的价值,企业自身也将从中获取更多收益。这会反过来进一 步推动企业的数字化转型和对数据资产的管理。未来,对数据资产的盘点可能成为企业在资 产负债表、现金流量表、利润表之外的“第四张表”。
数据资产化的发展,也会推动围绕数据价值挖掘形成全新的服务体系。其中包括数据确 权、定价、交易等各个环节。上海 社会 科学院信息研究所副所长丁波涛将未来数据资产服务体系中的机构分成四类:
第一类提供中介服务,包括数据经纪人,还有数据代理。
第二类提供数据评估,由于数据市场信息不对称或信息混乱,需要提供合规评估、数据 质量和数据价格的评估。
第三类提供价格咨询,如提供法律、经济咨询或者是上市辅导等的咨询服务企业。
第四类提供专业技术服务,包括数据开发、数据处理服务、数据交付服等。数据资产化的发展,带来的将是人们认知的提升、生产效率的提高、生产要素的重组、 创新的产生、经济的发展以及全 社会 整体福利的提升。
3、对现有业态的改变
区块链与隐私计算的结合,将提升企业和个人分享数据、利用数据的积极性,进一步推 动打破“数据孤岛”。其对现有业态的改变主要体现在以下几个层面:
第一,这将带来新的数据和 科技 变革。
首先,这将推动数据密态时代的到来。数据密态时代的核心,是数据流通使用方式的巨 大改变,数据将以密态形式在主体间流动和计算,显著降低数据泄露的风险,并在合规前提 下支撑各种形态业务的发展。此前,数据被加密之后只能用来传输或者存储,但是未来数据 在加密状态下可以被计算。这将带来一系列新的问题和挑战,引发许多相关技术领域的连锁 反应。
其二,这将重塑大数据产业。随着数据流通的安全化,以往较为敏感的数据领域逐渐开 放。以政务数据为例,隐私计算使联合政务、企业、银行等多方数据建模和分析成为可能, 进一步释放数据应用价值,创造了多样化的应用机遇。
其三,人工智能产业将获得新一轮的发展。数据、算法和算力是人工智能发展的三要素。近几年来,由于缺乏可用的数据,人工智能的发展遭遇瓶颈。未来,5G 和物联网的发展将使 得万物互联,数据量大幅增长。区块链+隐私计算技术的应用,可以使得人工智能利用海量数 据优化模型,真正迈向“智能化”。其四,这将为区块链产业的发展带来新的机遇。区块链与隐私计算相结合,将拓展联盟 链的节点数量,从而进一步扩大可协同利用的数据资源的范围。
第二,在 科技 变革的基础之上,区块链与隐私计算相结合,将给许多传统产业带来变革。
在政务领域,一方面,可以实现政府不同部门之间的互联互通及数据共享,从而促进政 府不同部门的协同,提高政府的效率以及决策质量,推动智慧城市的建设;另一方面,可以 促进政务数据与民间数据的双向开放。政务数据向 社会 开放,可以为企业或学界所用,释放 更多价值。民间的数据源向政府开放,可以提高政府在决策以及政务流程等方面的效率。
在金融领域,支付、征信、信贷、证券资管等各个领域都会因之发生变化。总体来看, 主要是影响到金融的风控和营销两个方面。区块链与隐私计算技术的结合,可以在符合法律 规定、不泄露各方原始数据的前提下,扩大数据来源,包括利用金融体系外部的互联网数据, 实现多方数据共享,联合建模,从而有效识别信用等级、降低多头信贷、欺诈等风险,也有 助于信贷及保险等金融产品的精准定价;同样,内外部多方数据的共享融合也有助于提高金融机构的反洗钱甄别能力。
在医疗领域,未来在疾病治疗、药物研究、医疗保险等多个领域,区块链与隐私计算都 能助推医疗信息化建设,带来巨大变革。在疾病治疗和药物研究方面,区块链与隐私计算结 合,能够促进更多的医疗数据被联合起来进行分析和研究,从而为许多疾病的治疗带来新的 突破。在医疗保险方面,区块链与隐私计算技术结合,主要是可以使得保险公司可以应用到 更多的数据,改善保险产品的设计、定价、营销,甚至可以促进保险公司对客户的 健康 管理 等。
区块链与隐私计算技术相结合,目前应用的重点领域是政务、金融、医疗领域,但是未来其应用将不仅仅局限于这三个领域,还将在更多领域发挥作用。
第三,数据权利、利益将重新分配。
这可能是区块链与隐私计算技术相结合所带来的最为核心,也是最为深刻的,与每一个人 的切身利益都息息相关的变革。
首先,这涉及到每个产业链不同环节利益的重新分配。
前述在广告营销领域的应用落地为例,此前广告营销的利益分配主要是在广告主与渠 道商之间。但是,未来应用区块链和隐私计算技术,可以在更大范围内进行数据协作,则要 解决广告主、多个渠道方、消费者之间多方数据协作的问题,这其中就涉及到多方之间权责 的划分、利益的重新分配。
其次,这还涉及到企业与个人之间利益的重新分配。
欧盟的 GDPR,美国的 CCPA 等法案中涉及用户的一项重要权益即“portability,(可携 带权)”。即第三方应用不能封锁个人数据,一旦个人有下载的诉求,APP 需要提供便利的 API 利于个人拷贝数据。美国公司已陆续为用户提供 API,如果在这方面功能缺失,个人客户 可以提出诉讼,而公司也将面临巨额的罚款。在中国的《个人信息保护法》当中,也有相关的条款。《个人信息保护法》第四十五条规 定,“个人有权向个人信息处理者查阅、复制其个人信息”、“个人请求查阅、复制其个人信息 的,个人信息处理者应当及时提供。个人请求将个人信息转移至其指定的个人信息处理者, 符合国家网信部门规定条件的,个人信息处理者应当提供转移的途径。”
目前,中国公司的区块链+隐私计算 探索 主要集中在 To B 服务领域,但是区块链是全球 化的商业,如果美国已经出现这样的模式,中国大概率不会完全不受影响。伴随着消费级软硬件技术能力的提升,区块链与隐私计算技术结合,会逐步对个人与机构 之间的数据服务进行变革。对于个人用户而言,将有机会获得自身隐私数据的完全掌控权, 并为数据业务过程中所涉及的数据隐私需求获得更强的技术性保障。目前关于 To C 服务的相关问题,国内业界还在探讨当中。
为什么区块链+隐私计算的应用尚未大规模普及?
第一,区块链+隐私计算的落地应用,主要是在涉及需要多方数据协作的情况,目前实际需求尚未爆发。
从隐私计算技术发展的角度来看,目前隐私计算尚在落地初期,解决的主要是两方之间 的数据协作问题,涉及到多方的场景还不多,因此很多时候还没有体会到对区块链+隐私计算 应用的需要。
从区块链技术发展的角度来看,区块链技术在许多领域的应用目前并非刚需。不少问题 可以应用区块链解决,但是不用区块链技术也能解决,而应用区块链技术解决的成本更高。因此,目前区块链项目的建设主要是政务部门和大型企业较为积极,因为政府和大型企业从 长远发展的角度来考虑,可以做前瞻性的投资建设和技术布局,但是大多数商业机构需要衡 量投入与产出。
区块链技术与隐私计算技术结合,主要是用于处理数据协作问题。从数据治理的角度来 看,目前大多数机构都在处理自身内部的数据治理问题,内部的数据体系梳理好之后,才涉 及到与外部进行数据协作,因此还需要时间。
第二,区块链+隐私计算的落地应用较为复杂,涉及到新商业模式的创造、权责以及利益 的重新分配,因此需要的时间更长。
以在广告营销领域的应用落地为例,目前的大多数应用 都只是落地了隐私计算平台,主要涉及两方数据协作,直接应用隐私计算技术,延续此前商 业应用即可。但是,如果引入区块链技术,则要解决广告主、渠道方、消费者之间多方数据 协作的问题,这其中可能涉及到多方之间权责的划分、利益的重新分配,新商业模式的形成 需要时间进行 探索 。
应用的大规模普及,还需要解决哪些问题?
区块链+隐私计算的应用在大规模铺开之前,还需要具备三方面的条件:
第一,从外部环境来看,需要全 社会 整体的数字化水平的提高。 打个比方,区块链+隐私 计算将来会形成数据流通的高速公路,但是路上要有足够的车。目前全 社会 的数字化正在快 速推进当中,大多数机构都是正在进行自身内部的数据治理,他们需要先处理好自己的数据, 之后才能产生更多的与外部数据进行协作的需求,这还需要时间。
第二,从技术发展来看,技术成熟尚需投入。 区块链+隐私计算技术的应用,实际上是牺 牲了数据流通的效率、提升了安全性,但是数据流通的效率也非常重要,未来需要在效率和 安全这两个方面形成一定的平衡,安全要保障,足够的效率也要满足,这其中涉及到许多技 术的研发、行业标准的制定,技术产品化的发展和完善、技术成本的进一步降低,还需要时 间。
第三,还需要相关法律法规的完善,以及数据交易商业模式的形成。 不过,这一条件与 前两个条件相比,其在目前的重要性相对次之。因为随着需求的爆发、技术的完善,相关的法律法规以及商业模式就会随之形成,这一条件在现阶段并非限制区块链与隐私计算技术落 地应用的最关键因素。
区块链+隐私计算的应用中还蕴藏着哪些趋势?
1、国产化的趋势
区块链+隐私计算的应用,涉及网络安全、数据安全,未来将成为新基建的重要组成部分。这是关乎网络空间主权、国家安全和未来发展利益的重要方面,因此这个领域的国产化是未来趋势。
在区块链+隐私计算技术应用的国产化当中,软件的国产化是相对容易实现的。难点在于 硬件的国产化,其中最难的部分是芯片的国产化。
这一部分的发展,与信创领域的发展相关。信创,即信息技术应用创新产业,其是数据 安全、网络安全的基础,也是新基建的重要组成部分。信创涉及到的行业包括 IT 基础设施:CPU 芯片、服务器、存储、交换机、路由器、各种云和相关服务内容;基础软件:数据库、操 作系统、中间件;应用软件:OA、 ERP、办公软件、政务应用、流版签软件;信息安全:边 界安全产品、终端安全产品等。
在区块链+隐私计算领域,目前已经有企业在尝试产品的国产化。例如,前文提到的,蚂 蚁链自研了密码卡、隐私计算硬件以及自研可信上链芯片,同时还推出了摩斯隐私计算一体 机。创业公司如星云 Clustar、融数联智也在进行相关国产化硬件产品的研发。
2、软硬件技术相结合、更多技术融合发展的趋势
目前,在区块链与隐私计算技术相结合的实践中,也呈现出了软硬件技术相结合、更多 技术融合发展的趋势。这主要是缘于几方面的需求:
第一,是加强数据安全性的需求。
隐私计算主要是解决数据在计算过程中不泄露的问题,区块链主要是解决存证问题,二者结合仅能解决数据安全的一部分问题。数据从产生到计算再到消亡,会涉及采集、传输、 存储、计算、销毁等多个环节,其生命周期可能会有数十年之久,要真正保障数据安全需要 一个更加全方位的、体系化的解决方案,以使得每个环节上都有对应的技术体系保障数据安 全 在数据采集阶段需要精心设计设备可信架构,在网络传输阶段需要合理运用安全协议, 在存储阶段需要兼顾加密与性能,在数据计算阶段需要灵活选择可信执行环境与密态运算。除此以外,计算环境的可信与安全在防御纵深建设上也至关重要。这些安全保障能力的技术 图谱会涉及到可信计算、软硬件供应链安全、隔离技术、网络与存储的透明加密、密钥管理、 可信执行环境等等。这其中每一个技术点都有软硬件结合、多种技术融合发挥的空间。
第二,是提升计算性能的需求。
隐私计算的性能目前还比较低,在计算机单机、单机和单机之间、计算机集群之间这三 个层面上都存在。
在计算机单机上,隐私计算由于运用了密码学技术,计算过程中涉及到很多加密解密的 步骤,这使得计算量以几何级数增加。以全同态算法为例,在通用芯片上密文运算的速度比 明文运算慢了 10 万倍。这意味着,做同样的运算,如果用全同态算法,在 Intel 最新的 Icelake 处理器上,跑出来的效果等同于 Intel 的第一代 8086 处理器,直接回退了数十年。这使得全 同态加密在现实情况下就不具备可用性了。算力问题也是导致全同态算法一直未得到广泛应 用的根本原因。
在单机之间和计算机集群之间,会涉及到单机之间和集群之间的通信效率问题。一方面, 主流的隐私计算技术无论是联邦学习还是多方安全计算,都有通信问题。密文膨胀、传输次 数膨胀,会导致单机之间网络传输效率成为隐私计算的瓶颈之一。另一方面,由于大多数隐 私计算的场景都是跨多方的,多方要通过公网进行通信,公网的带宽与时延目前也是巨大的 鸿沟。
性能的问题,会随着时间的推移越来越严重。2021 年,隐私计算的落地尚处于颇为早期 的阶段,主要是在一些机构内部或者是两方、三方之间应用,处理的数据量较小,这个问题 还不明显。可是未来,多方数据交换需求的到来、5G 和物联网的发展所带来的数据量急剧增 大,最终导致的将是数据量爆发式的增长,这需要消耗大量的算力。
到那时,隐私计算的性 能将面临巨大的挑战。现在在硬件的创新方面正处于体系结构的黄金时代。这是因为,移动互联网的飞速发展 使得应用场景发展很快,上层的软件也发展很快,这使得在计算机底层进行支持的硬件甚至 芯片都需要随之进行改变,进入了新一轮的创新周期。
而从区块链与隐私计算结合的长远发展来看,软硬件结合、多技术融合,对隐私计算来 说,可以提升性能、安全性和计算效果;对区块链来说,可以促使更多机构低成本加入联盟 链,扩大联盟链应用范围。
END
编辑 | 领路元
来源 | 零一 财经 《区块链+隐私计算一线实践报告(2022)》
怎样的路才算智慧高速公路?
随着智能交通科技和产业的发展,我国正在形成一个安全可靠、便捷高效、绿色智能、开放共享的现代化综合交通运输体系。《“十四五”现代综合交通运输体系发展规划》明确提出,加快智能技术深度推广应用,坚持创新驱动发展,推动互联网、大数据、人工智能、区块链等新技术与交通行业深度融合,推进先进技术装备应用,构建泛在互联、柔性协同、具有全球竞争力的智能交通系统。
智慧公路系统将先进的数据通信技术,传感器技术、人工智能等新兴技术有效地综合运用于交通运输,服务控制和车辆管理,加强车辆,道路、运维三者之间的联系,从而保障安全,提高效率,改善环境,节约能源。连接起城市与乡镇的智慧数字化全面发展,打造智慧城市、数字乡村新格局。
什么是智慧高速?
基于全域三维可视空间、多源异构数据治理、动静融合业务管控的数字孪生平台,让 ETC 可视化、收费站可视化、服务区可视化、公路数据中心、隧道可视化……等,公路、桥梁、附属设施等公路交通基础设施具备多维感知能力,能够实现彼此间的信息互联互通和自动控制,并与交通工具、交通参与者的协同联动,为公路交通安全和高效通行提供数据支撑。以全域全路网全要素数字化为基础,以全周期全业务数字化为引领,赋能高速公路管理服务全网络全业务数字化升级。
以上智慧高速公路为可交互的 Web 智慧高速公路交通可视化管理运维平台,将其地理信息系统(Geographic Information System,GIS)的数据进行丰富的可视化展示。高速公路可视化大屏结合 GIS 地图,辅以左右两侧面板进行展示。分别从隧道机房、ETC 门架、服务区、收费站等几个维度进行整合,全方位掌控公路交通的运行状况。
与 GIS 的集成方案中可提供项目实际需求构建漫游线路,按照指定线路对城市各地区进行漫游移动,在制定线路的时候可以参考重点区域或智能化水平较高的区域进行制定,给用户呈现公路重点发展区域以及智能化发展成效。在高速公路 BIM 模型的基础上融合 GIS 信息,综合分析不同规划方案下地质和地理状况,以此避免道路规划中的地质灾害和环境敏感区。同时,在 CIM(城市信息模型)平台中植入优化算法进一步纠正高速公路的规划路径。
ETC 门架系统一种高速不停车收费的设施。龙门架上可以安装一些鉴别汽车信息的设备,根据组装在汽车前挡风玻璃上的车载 RFID 标签与在收费站 ETC 行车道龙门架上的微波天线中间的微波加热专用型近程通信,利用软件连接网络技术应用与金融机构开展后台管理清算解决。
ETC 车辆监测
高速可视化管理运维平台中的 ETC 门架系统同样可具备通行车辆分段计费、流量调查、视频监控、超速筛查等功能,汽车经过门架之后,门架上安装的监控系统会自动识别汽车,同时实现计费。
设备监测
收费站是公路系统功能发挥的重要组成部分,公路收费站机电设备是保障公路正常运行的关键,高速公路的机电系统应该随着交通运输业的发展不断往信息化、智慧化更新。
通过其丰富的 2D 可视化面板样式,将公路收费情况、车辆通行情况、出入口车道情况以及机电设备如栏杆机、车牌识别、车道监控、车道控制器、天线、费显、车道指示灯、情报板等设备的数量、运行情况以及设备运维情况进行汇总统计输出于大屏上,让运维人员无需再通过纸质文件传递信息与归档,提高工作效率,增强管理水平。
通过数字孪生技术将服务区、服务区内建筑、周边环境设施进行高度还原,支持融合物联网、大数据等各类信息技术,整合服务区现有信息系统的数据资源,通过“一张图”的形式进行服务区管理。未来将助力实现服务区高质量发展和旅游、商贸、物流等功能拓展。
人流热力图
通过多个智能摄像头的图像识别分析,能形成一个完整的服务区热力图。显示休息区人流情况及拥挤程度,红色区域人群聚集,绿色区域游客较少。管理者通过 3D 可视化管理平台进行人流监控可以建立人流预警机制。
公厕管理
服务区卫生间也实现了智慧化升级,可实现实时空余厕位数量的显示,有效引导旅客避开如厕高峰。运维人员通过可视化可实时查看公厕的使用情况等数据,便于安排保洁进行厕所消杀等清洁工作。
设备监管
将设备告警信息、故障信息等数据进行整合,对隧道内的车道摄像头、指示灯、情报板、风机、亮度仪、气体检测仪、风速风向检测、火焰探测器等设备进行数字化监管。
点击隧道进出口处指示信息会弹出隧道内指示灯的设备详细信息,运维人员可通过智慧高速平台快速查看到每个隧道的指示灯情况,并且可通过可视化来远程控制灯光等设备,避免设备问题导致的交通事故发生,打破公路设备信息孤岛,实现隧道设备的智联协同。
数字孪生智慧高速,Hightopo 以高速综合管控为导向,提升设备控制、事件预警、流程管理、应急处置等综合业务能力。助力交通运营管控朝着更智慧、更安全、更便捷的方向发展,推动交通行业的数字化转型升级。
专访TDC创始人娄胜利:未来交通的建设者
5.24-5.25日,IFIC全球金融科技创新峰会在海南三亚隆重召开。本次峰会由三亚市人民政府指导,人民日报数字传播、FINWEX等主办,六维量子、ANTTOKEN联合主办。
交通+区块链项目TDC创始人娄胜利受邀出席,并参与主题为“未来可预见的区块链行业变化”的圆桌论坛,在回答主持人提出的目前中美贸易战可能对行业带来的影响做了精彩发言。
他认为经济和技术的发展都在一定程度上符合波浪理论,中美贸易战既是我们这一代的挑战,也是另一种幸运——因为我们又站在了历史发展的制高点。在这种背景下,推动各类技术服务、赋能于实体经济,才能迎来快速发展。
会后,娄胜利先生接受了IFIC现场采访,分享了TDC 交通大数据推动未来交通落地的建设者角色。
1. 刚才的圆桌会议上您提到在开始TDC这个项目之前是在山东高速集团工作,负责整个山东高速的养护维修。您能再详细跟我们分享一下您的专业背景和行业经历么?
我是2000年步入大学,本科学的交通工程,对物流管理也有所涉猎。大学那会儿一直是学生班主任,需要负责学生专业的引导,当学生的导师。所以在和他们谈专业的时候,要先建立自己的专业信息。因为在2000年以前,以及2000到2010年这十来年,整个高速公路建设如火如荼,我们就会反过来想,那么高速公路建完了,甚么专业最吃香,那肯定是围绕着高速公路所建立起来的安全和信息化所针对的方向,所以说基建会逐渐进入夕阳产业,然后又上了软件工程的研究生,针对交通安全的信息化来进行行业的瞭解。
毕业之后到山东高速集团工作,负责高速建设、运营和养护工作,在山东高速工作了12年。11年时开始担任山东高速驻京办主任,当时和交通部的部委们接触比较多;同时还担任公路绿色、智能养护技术协同创新平台副秘书长,这个平台是中交一公院发起的,和超过20个省省份的交通厅和公路运营单位合作,负责给省属交通厅做创新的项目。2016年正式辞职创业,开始做公路信息化这类的项目。现在TDC这个项目,把物流、交通安全、计算机信息都融合在了一块,也算是我个人资源的一个最大化运用吧。
2. 根据您刚才的一个分享,我们大概瞭解到TDC这个项目是交通+区块链的模式。结合您的专业背景,又是甚么契机让您进入到区块链行业呢?
从小的层面说,我经历过车祸,这使得我对道路环境造成的交通安全问题深有体会。从那之后我一直在关注这个领域。如果说我出门我就能知道,未来的路况是甚么样的,哪里有危险,对面会过来一个甚么样的车,这些信息能掌握在我手里,我就可以很好的去控制风险。
从大的层面说,目前社会上,交通行业是资本非常关注的一个行业,今天也有很多嘉宾在讲无人驾驶,在讲未来交通。经过这么多年,公路行业在大量国家基础设施的投资下,我们的路网基本形成。现在交通行业的主要矛盾也在发生变化,由原来的走不了、走不快、货物运不出,转变到现在怎样走得好、走得安全、货物运得畅通。对于公路来说,如此大的路网都形成了,怎样才能用更好的手段来解决我们交通行业走得好、走得安全、货物运畅的矛盾?实际上,交通是由人、车、路、环境四个因素组成的,作为目前的社会技术的发展来说,我们的车已经很智能了,而且我们的人也很聪明。但如果路满足不了交通需求,保证不了通行安全的话,那么交通也无从谈起。
TDC这个项目所做的就是站在路上,站在公路运营方的角度来看,怎么样让路变得聪明起来?为甚么这么说?因为目前我们的路它是既聋又哑的,首先他是个聋子,甚么的车要经过我这条路,我不知道。它还是一个哑巴。路况问题比如说她路上有坑,桥要塌了,路上结冰了,路上有易撒物这些问题路本身知道,但是它说不出来。
而解决这些问题的一大挑战就是庞大的数据采集量和采集工作量,在对区块链技术初步瞭解之后,我们发现区块链这种方式,从技术层面,能利用分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式,有效解决数据安全和共享的问题;从经济层面,能建立交通安全数据采集和应用的生态体系,链接B端和C端的数据交互,奖励机制促进了数据采集、转换和应用,提高全民采集共享交通安全数据的积极性,刚好可以快速简便的帮助我们采集交通实时大数据、交通状态,把数据服务于我们这个行业,解决现在交通行业的主要矛盾。
3. 好的感谢娄总,您刚才提到TDC旨在解决现在交通行业的主要矛盾,您可以跟我们分享一下TDC这个项目具体是怎么运行来解决这些矛盾的呢?
好的。TDC项目核心是采集实时交通数据并反馈,实现车路协同。
第一个点是通过分布式计算这项技术来提高交通数据采集的效率,降低数据采集的成本。我们目前正在推进行车数据采集仪器的研发,这个仪器核心是人工智能芯片,通过卷积神经网络算法识别多种类别的交通数据,经过数据清洗后,可用数据上传需求带宽要求将大幅降低。
第二个点是分布式存储,上传后的数据按照调用频率,存储在不同服务器中,降低大数据量对服务器硬盘的压力。同时根据实时数据类型进行加密,分为链上ID,分布式加密存储来对TDC进行赋能。
第三个点是经济激励,整体而言,交通数据体量庞大,利用率低下,更别说实时数据应用了。传统交通数据需求方获取数据耗时长,投入大;以高德为例,他比百度要多采集车,但是它最快是三个月才能采集一遍道路的清路实景数据。而道路通行方,例如客货运输相关企业,在TDC项目经济模型中通过上传有效行车数据能获得相应奖励, 降低自身出行成本,提高出行的安全性和便捷性。对交通数据需求方而言,数据来源将不仅限于自身数据采集设施,这样一来降低了采集成本,提高了采集效率。
4. 听起来TDC这个项目落地场景已经非常明确了。在您看来,这个项目能推进的信心从何而来呢?
目前的话,我们交通数据研究合作成员单位包括交通运输部大数据中心、路网监测中心、山东大学、山东财经大学、东南大学;项目核心团队由山东大学教授、博导包方勋教授指导,多名经验丰富、高水平的视频算法工程师、交通工程专家组成;我们是华为1+N智慧交通生态合作伙伴,针对这个项目,双方进行了深度的合作。技术层面,我们和地平线这家优秀的国产芯片公司正在合作,目前正在利用大量数据训练TDC的人工智能芯片,预计TDC初代数据采集“矿机”能顺利在9月面世。
5. 瞭解,那您对TDC这个项目,乃至整个交通行业的未来有甚么样的展望可以分享一下么?
目前,中国已经是全球最大的汽车产销国,中国的高速公路里程数在全球排第一,而中国高速公路的效率却并不是很高,中国在基础设施的投资上跑在了世界的前沿。所以我们考虑的是车和路未来之间的关系应该是怎么样的,仅仅是路归路、车归车?还是可以把路和车通过某种技术连接起来,让车与路处于同一个系统当中、更加融合,从而让车的驾驶能够更安全,路的通行更有效率?
甚么是车路协同?车路协同是基于无线通信、传感探测等技术进行车路信息获取,并通过车车、车路信息交互和共享,实现车辆和基础设施之间智能协同与配合,达到优化利用系统资源、提高道路交通安全、缓解交通拥堵的目标。车路协同的技术内涵有三点,一是强调人-车-路系统协同,二是强调区域大规模联网联控,三是强调利用多模式交通网络与信息交互。这项技术是信息技术与汽车和交通两大行业相融合的结果,TDC将践行未来交通建设者角色,通过实时交通大数据持续为交通行业发展贡献一份力量。整个交通运输行业在不久的将来智能化程度必将在多方共同努力下得到极大的提升。
后记:随着更多区块链技术在日常生活场景中落地,整个区块链行业将迎来更为良性的发展。浪潮退去,深耕行业的人们,绝不会裸泳。
关于区块链和高速公路融合和区块链和高速公路融合的意义的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
标签: #区块链和高速公路融合
评论列表